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Magnetic properties of bilayer triangular lattice
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This paper mainly studies the ferromagnetic fluctuations of two types of bilayer triangular lattices on the
basis of single-band Hubbard model. First, according to the tight-binding model, energy spectrum, the density
of states and spin susceptibility can be obtained analytically. Second, we take finite Coulomb interaction into
account, apply the random-phase approximation and do the determinant quantum Monte Carlo simulation.
Finally, this paper makes comparisons of magnetic properties of two types of bilayer triangular lattices, and the
effects of the interlayer coupling are also discussed in detail.

DOI: 10.1103/PhysRevB.80.014428

I. INTRODUCTION

Recent discovery of superconductivity in Na,CoO,-yH,0
(Ref. 1) and related fascinating normal-state properties’
have revived people’s interest in geometrically frustrated
systems, such as triangular layers. Although the single-band
Hubbard model has been widely studied and understood, it
can still be used as the minimum theoretical model when we
investigate electron correlations on the two-dimensional tri-
angular lattice. As a starting point, the single-band Hubbard
model also helps us study the mechanisms of magnetic fluc-
tuations and superconductivity induced by electron-electron
interactions. Previously, the Hubbard model on the single-
layer triangular lattice has been studied with various tech-
niques: such as the one-loop renormalization group’ and the
fluctuation exchange approaches.® Antiferromagnetic (AFM)
correlations near the half filling and ferromagnetic (FM)
fluctuations near the van Hove singularity were studied by
the determinant quantum Monte Carlo (DQMC) and con-
strain path Monte Carlo (CPMC) methods, respectively.”3

Na,Co0,-yH,0 has a multilayer structure, and in this
system, the distance and couplings between the two CoO,
layers depend on the inserted H,O molecules, which are of
great interest from both chemical and physical points of
view.>12 They are also key to understand the pairing mecha-
nism. To address the influences of H,O molecules between
the two CoO, layers, it is worth the effort to study the single-
band Hubbard model on the bilayer triangular lattices. Pre-
viously, electronic structures of cobalt oxide bilayer hydrate
were studied by the first-principles calculations.'? Quantum
phase transition was also discussed in the content of the
Heisenberg model on the bilayer triangular lattices.'* For re-
lated researches, there are studies of the single-band Hubbard
model on bilayer square lattices.!>16

In reality, many materials discuss the structures of bilayer
triangular lattice, for example, spin-dimer materials
Ba;Mn,0g (Refs. 17-19) and Mng molecules,’ where Mn
ions form the bilayer triangular lattice. Another interesting
material is graphene, which has attracted great attention re-
cently due to its Dirac fermionic behavior at low energy.?!
Graphene has honeycomb lattice, which can be regarded as
two interpenetrating triangular sublattices, and it is similar to
the bilayer triangular lattices we are interested in. Here, in-
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terlayer coupling plays an important role in these systems.

In this work, we study two types of bilayer triangular
lattices as shown in Fig. 1. In Fig. 1(a), for every atom, there
are six nearest neighbors in one layer and three next-nearest
neighbors in the other layer. This structure is similar to the
honeycomb lattice. For the structure shown in Fig. 1(b), ev-
ery atom has only one next-nearest neighbor in the other
layer. We call the lattice shown in Fig. 1(a) structure A and in
Fig. 1(b) structure B in all the following. These two struc-
tures can be regarded as two-dimensional triangular lattices
with every unit cell consisting of two atoms. The model
Hamiltonian of the system is

H=—1t 2, (c}docid‘, +He) -t > (c;wci20+ H.c.)
(Lj)do (Lo

+U MiaiMia) = B2 i (1)
id ido

where ¢;y, (c},,) annihilates (creates) electrons at site R; in
the dth layer (d=1,2) with spin o (o=7,]) and ny,
=cde{,cidU. This system has intralayer nearest-neighbor hop-
ping ¢ and interlayer next-nearest-neighbor hopping #’. These
two layers have the same chemical potential . We also con-
sider the electron-electron Coulomb interaction U.

Metallic ferromagnetism in correlated systems is a long-
standing issue, which has been actively studied both numeri-
cally and analytically.”>> It has been quite well known that
the geometry of the system, the shape of the density of states
(DOS), and the large degeneracy of single-particle energy

(o)

FIG. 1. (Color online) Two types of bilayer triangular lattices
studied in this work are shown as structure A in (a) and structure B
in (b).
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level are crucial to the stability of the FM state.?-2® The
triangular lattice, compared to square lattice, has a higher
degeneracy on the energy level and asymmetric distribution
of the DOS, so it favors stronger FM fluctuation in some
parameter regions. For the single-layer triangular lattice, its
DOS has one van Hove singularity at band filling (n)=1.5.
When the interlayer hopping ¢’ is introduced, two van Hove
singularities appear with DOS decreasing (see below). Ac-
cording to the itinerant electron FM theory, the FM fluctua-
tions tend to the higher DOS on the Fermi surface. So the
interlayer hopping ¢’ will influence the FM fluctuations,
which motivates us to compare the spin susceptibilities of
single layer with bilayer triangular lattices.

This paper is organized as follows. In Sec. II we calculate
the dispersion relations and the DOS for the two types of
bilayer triangular lattices at noninteracting limit (U=0 refers
to as the tight-binding model). The purpose is to study the
special feature introduced by the two different structures: one
with a finite gap, while the other is gapless, but both of them
have two van Hove singularities, which affect their magnetic
properties. In Sec. III, the spin susceptibility is studied by
applying the random-phase approximation (RPA) to estimate
the critical value of Coulomb interaction U, at which the
magnetic instability occurs. Then we obtain a rough estima-
tion before nonperturbative approach is used to deal with
electron-electron correlations. In Sec. IV we present numeri-
cal results obtained by the DQMC method. For example, we
study the FM fluctuation of the system near one of the van
Hove singularities in band filling region 1.6=n=1.85. In
Sec. V we summarize our results.

II. TIGHT-BINDING MODEL ON THE BILAYER
TRIANGULAR LATTICES

To gain some primary insights of the two structures, we
begin with investigating their dispersions and DOS and then
compare them with the single-layer case. At U=0 the tight-
binding model Hamiltonian can be diagonalized by using the
Fourier transformation

Cido =

Z lckd(r’
k

L
N

’2‘1| -

—ik-R;
2 e *Fic] Kkdo-
k

Then the Hamiltonian has a simple form of sum of 2 X2
matrices,

ag B\ [k
H=2 (cfi, CIT(ZG-)( )( g)- (2)
ko Bk ag /) \Cx2qo
The elements of the 2 X 2 matrix are
ay=—2fcosk-a+cosk-@;+cosk- (@ —-a;)] - u,
Pio=—1[1+ ™G0 4 ok ],

The 2 X 2 matrix can be diagonalized by the following linear
transformation:

PHYSICAL REVIEW B 80, 014428 (2009)

1(b)

= T Ml Kl T T r T
4. LI T T
IRy =— l@
04
-4 4
-8 8 T Ml T Ml

FIG. 2. (Color online) Dispersion relations for structure A are
represented in (a) and (b), while (c) and (d) represent structure B. In
every subfigure the upper curves represent the band E*, the middle
curves represent single-layer triangular lattice ' =0, and the lower
curves represent band E~ .

=
V2|
Ckle= "5 ﬂk (dio+ diag) s (3a)
K
V2
Ckro = T(dkw— dya), (3b)

where we introduced another set of operators dy, and dy, -
Then the Hamiltonian has the diagonalized form as

H= 2 (E*d}, 1o+ Edip,dia,).- (4)
ko

Because of double layers, the energy spectrum has two
bands. For structure A,

Ef =—1G(k) - p = £'\3+ G(k), (5)
while for structure B,
Eg=—tGK)—p*1t'. (6)
Here,
G(k)=2[cosk-a;+cosk-a,+cosk-(a;—a)]. (7)

Figure 2 represents the dispersion relations for the two
structures along the symmetry path in the first Brillouin zone
(BZ). Following the convention, I' point is (0,0), M point is
(0,), and K point is (—%’T,%’T). We calculate the dispersion
relations for ' =0 (the case of single layer), '=0.4, and ¢’
=0.8 (unit of 7). The effects of ¢’ are evident: (1) for structure
A, there is no gap between the two bands, while for structure
B, there is an energy gap equal to 27’ at K point. At finite
temperatures, the electrons will occupy not only lower band
but also upper band, so this energy gap will affect correla-
tions between the two bands; (2) the bandwidth of spectrum
becomes lager when ¢’ increases, so we expect that the Cou-
lomb interaction will have smaller influences on the mag-
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FIG. 3. (Color online) DOS and band fillings of structure A are
functions of energy: the red curves represent fillings (n) and the
black lines represent the DOS computed from Eq. (5). The marked
(n) are the filling values at one of the van Hove singularities.

netic fluctuations. We also note that, as shown in Fig. 2, there
exist saddle points near K point, where the DOS has a large
value.

In Figs. 3 and 4, in the single-layer triangular lattice case,
t'=0, there is only one van Hove singularity at filling (n)
=1.5. When ¢’ is introduced the van Hove singularity be-
comes two separated peaks, and with ¢’ increasing, one peak
moves toward the half filling while the other one toward the
full filling. We will study the magnetic properties in the high
band filling region. In particular, FM fluctuations may arise
due to this higher DOS near the Fermi level.
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FIG. 4. (Color online) DOS and band fillings of structure B are
functions of energy: the red curves represent fillings (n) and the
black lines represent the DOS computed from Eq. (6). The marked
(n) are the filling values at one of the van Hove singularities.
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Comparing DOS of the two bilayer structures as shown in
Figs. 3 and 4, in the high filling region, it is clear that DOS
of structure A is larger than that of structure B, in particular
their DOS at the van Hove singularities near the band top. In
terms of Stoner’s FM theory for itinerant electrons, FM fluc-
tuations tend to high DOS on the Fermi surface. So if we
locate the Fermi surface near van Hove singularity by adjust-
ing chemical potential, we expect that the magnetic fluctua-
tions are stronger in structure A than that in structure B.
These expectations will be tested by the RPA calculations
and quantum Monte Carlo simulations, which will be dis-
cussed in the following sections.

II1. SPIN SUSCEPTIBILITY FOR THE
TIGHT-BINDING MODEL

In this section, we calculate the spin susceptibility for the
tight-binding model and then apply RPA to estimate critical
values of Coulomb interaction when magnetic instabilities
occur. The spin susceptibility in the z direction at frequency
=0 is given by

1 (# . )
Xar (@)= f drY, e RR) iRy, m, (R;,0)),  (8)
0 ij

where mfj(R, , O) = C;iTcdiT - cjiilcdii and mﬁl(R, s T)
=e""m3(R;,0)e™7, and N is the number of sites in one layer.
The susceptibility has four components, x;i, Xi2> X21,» and
X2o- Obviously, there exist the relations y;;=x2, and x;
= X5,- Because the Hamiltonian is solvable the spin suscepti-
bility can be calculated analytically. After performing Fouri-
er’s transformation, there are mean values of several four-

operator terms in the spin susceptibility as follows:

1 (P ‘
NJ dr>, €lq'(Ri_Rj)<C§dg(T)Cidg(T)Cder(,erd'a'>
0 ij

B

=N dTE E <C]T(1du—(7-)ck2da-(7)
0

ij {k

T iq-(R;—R:)+i(k{—k,)-Ri+i(k3—k4)-R;
Xck3d’g-’ck4d’0"> - e L 172270 37R4 1,

9)

where ¢;,(7)=e""c;,e”7. By the linear transformation of
Egs. (3a) and (3b), we calculate these correlation functions
by applying Wick’s theorem. The intralayer spin susceptibil-
ity has the form

X11(q) =B + B, + B3+ By, (10)

and the four correlation functions are

B =- LE (Mrqio) = (ki)

-+ 9
4Nk,0’ k+q — EK

(11a)

L s Oieqpe) = g (11b)

By=—-— -
4Nk,¢r Ek+q - E+k

33=—i2 nk+gl(r>_<nk2(r>’ (11c)

4Nk,a ;+q - Ex
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2 <nk+g2¢7> (M2 .

(11d)
4Nka' Ek+q Ek

The interlayer susceptibility also can be written as
X12(@) = C+ Co+ C3+ Cy, (12)

there are also four terms as

2 <nk+glo> <nkl¢r> i Prrqr)

(13a)
4Nko- Ek+q Ek

1

G = 2 M e/ Prrq=01)

(13b)
4Ny  Exiq— Ey

2 <nk+glg> <”k2¢r> E——

(13c¢)
NGy Efug-Ex

3

1 n —(n .
C4 - _2 < k+g%o’> < _k20>el<‘l’k+q_‘10k)’ (13(1)
4Nk,o Ek+q - Ek

here (ny;()) is the occupation number of electrons i 1n band
E*©) with momentum k, and the phase factor e ik = B Bl ,8 - For
paramagnetic correlations, the mean value of occupation

number obeys Fermi’s distribution. First, when ' =0 the two
bands are the same E*(k)=E~(k), and Eq. (10) becomes

2 <nk+gu'> <nk(r>

x(q)=-
Nio Exiq— Ex

which is well known as the spin susceptibility in the single-
band case while y,(q) becomes zero. Second, we compare
these two correlation functions and observe that y;, has an
added phase factor and its four terms have different signs,
which result in y,(q) being much smaller than y;;(q). We
expect that if the energy gap is larger, the correlation func-
tions decrease and the spin susceptibilities become smaller
accordingly. In view of the DOS, when the differences of
energy AE=Ey,,—Ey with given momentum q (either within
one band or between two bands) varies more rapidly, corre-
spondingly, the DOS will be smaller, as well as spin suscep-
tibility.

Figure 5 shows the total spin susceptibilities y,(q)
=%Eddr Xaa'(q) of the tight-binding model at zero frequency
for different ¢'. Corresponding band fillings are marked in
Figs. 3 and 4. In Figs. 5(a) and 5(b) the spin susceptibility
will increase rapidly when the temperature is lowered, but at
T=1.0 (unit of 7), the curves of susceptibilities are very
smooth. It is shown in Figs. 5(c) and 5(d) that spin suscep-
tibilities become smaller as ' increases. We compare the
results of the two types of bilayer triangular lattices and find
that the spin susceptibility of structure B is lower than that of
structure A. It is because that when ¢’ increases, near the van
Hove singularity the energy gap of structure B is magnified
and the DOS decreases. In structure A the value of y,(K) is
not sensitive to the change in ¢’ because the two energy
bands are degenerate at K point.

When interaction U is turned on, the magnetic suscepti-
bility within RPA is given by?’
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FIG. 5. (Color online) (a) and (c) represent the results of struc-
ture A, and (b) and (d) represent the results of structure B. The
momentum ¢ is along I' =M — K—1T" in the first BZ.

(q) = Xo(q)

T 1-Uxolq) (14)

Because we are interested in the region far away from the
half filling, RPA predicts a transition between paramagnetic
phase and FM phase with the high DOS when the critical
condition is satisfied,

1 - Uxo(q) =0. (15)

At zero temperature, Eq. (15) becomes the Stoner criterion
Up(Er)=1, where p(Ef) is the DOS on the Fermi surface.
On one hand when we tune band filling to localize the Fermi
energy at the van Hove singularity, the system is unstable
against FM fluctuation. On the other hand Eq. (15) can be
used to determine the critical strength U, as the transition
appears.

We calculate U, with given ¢' and temperatures. First, for
the two structures with fixed value of ¢', U, decreases as
temperature is lowered. Second, when ¢’ is increasing, a
larger U, is needed for the transition between paramagnetic
and FM phases. Third, with the same ¢’ and temperature, U
of structure A is a bit smaller than that of structure B. More-
over we expect that when parameters are the same for the
two different systems, the FM fluctuation is stronger in struc-
ture A than that in structure B. The results of RPA are rea-
sonable because in Figs. 3 and 4, it is shown that for struc-
ture B the region between two singularities is wider and the
DOS is lower than those for structure A.

Although the validity of RPA is limited, data presented in
Tables I and II are helpful in choosing appropriate param-
eters for quantum Monte Carlo simulations. In the following
section, we will observe that FM fluctuations are noticeable
both in structures A and B for certain parameters, but for
some parameters the fluctuation in structure B is suppressed.
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TABLE 1. The critical value U, (unit of 7) for structure A.

Uc 7=0.167 0.25 0.5 1.0
t'=0 1.63 1.82 241 3.65
t'=0.4 1.90 2.07 2.76 4.38
t'=0.6 2.05 2.26 3.08 4.90
t'=0.8 2.13 2.39 3.26 5.13

PHYSICAL REVIEW B 80, 014428 (2009)

IV. QUANTUM MONTE CARLO ANALYSIS ON THE
SPIN SUSCEPTIBILITY

To deal with electron-electron interaction nonperturba-
tively, we use the DQMC method® to simulate the single-
band Hubbard model on the bilayer triangular lattices and
treat this system as a grand canonical ensemble at finite tem-
peratures. We mainly calculate the spin susceptibility by the
unequal-time Green’s function in the imaginary-time direc-
tion. We perform DQMC simulation on this model for three
sizes of lattice, 36 X 2, 48 X 2, and 64 X 2 sites. Simulations
were done for both two structures as shown in Fig. 1. In the
filling regions under investigation, the behaviors of the spin
susceptibilities are qualitatively similar. We present here the
results at band filling (n)=1.7. Figure 6 shows x(q) versus
momentum ¢ along the symmetry path in the first BZ for
U=8 and T=0.33. The critical values of Coulomb interac-
tion, U, based on RPA results (with the same parameters '
and 7) in Sec. III, are much smaller than the value we adopt
here (U=8). So magnetic fluctuations in the three structures,
the single-layer triangular lattices (' =0), and the two types
of bilayer lattices with (#'=0.6), are evident, and in the six
subpictures we compare their spin susceptibilities. In both
t'=0 and ¢'=0.6 cases, x(q) have broad peaks around the I’
points, indicating obvious FM fluctuations in these systems.
Compared to the spin susceptibilities in Fig. 5 it is seen that
considerable Coulomb interaction greatly intensifies mag-
netic fluctuations. Moreover when ¢’ increases, x(0) (I'
point) decreases and the FM fluctuations are suppressed. On
the coupled bilayer square lattices, the similar results for the
AFM fluctuations were reported.'® We may attribute this
phenomenon to the Stoner’s theory that the FM fluctuations
tend to the high DOS on the Fermi surface. When ¢’ is in-
troduced the original singularity is divided into two peaks; as
a result, the DOS near these two peaks is lowered.

In Figs. 7 and 8, we present the spin susceptibilities on the
48 X2 and 64 X2 lattice, respectively. We fix band filling
(n)=1.7 and U=8, which is about the bandwidth. At tem-
perature 7=0.33, it is clear that there are FM fluctuations,
but at higher temperature 7=1.0, the curves of y(q) become

TABLE II. The critical value U for structure B.

Uc T=0.167 0.25 0.5 1.0
t'=0 1.63 1.82 241 3.65
t'=0.4 2.13 2.36 3.16 5.07
t'=0.6 2.71 2.89 3.74 5.63
t'=0.8 3.29 3.45 4.12 6.00
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FIG. 6. (Color online) The spin susceptibilities y(q) in (a) and
(b) are for the 36 X 2 lattice, in (c) and (d) are for the 48 X 2 Iattice,
and in (e) and (f) are for the 64 X2 lattice, with parameters U=8,
T=0.33, and filling (n)=1.7. (a), (c), and (e) are for structure A, and
(b), (d), and (f) are for structure B. The momentum q is along T
—M—K—T in the first BZ.

much smooth, namely, the FM fluctuations are not notice-
able.

In Fig. 9, we study the spin susceptibilities y(q) versus ¢’
with U=4 and temperature 7=0.25. The band filling (n) is
fixed at 1.7 with high DOS, as is shown in Figs. 3 and 4. We
do the calculations on the 48 X2 lattice. To emphasize the
effects of ¢', we also show the results of the single-layer
triangular lattices in every subfigure. Figure 9(a) shows the
results of structure A, and Fig. 9(b) shows the results of
structure B. The rise in y(q) with ¢’ decreasing can be seen

1.0 T T
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FIG. 7. (Color online) The spin susceptibility y(q) is repre-
sented versus temperature on the 48 X 2 lattice with U=8 and filling
(n)=1.7. (a) is for structure A and (b) is for structure B.
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FIG. 8. (Color online) The spin susceptibility x(q) is repre-
sented versus temperature on the 64 X 2 lattice with U=8 and filling
(ny=1.7. (a) is for structure A, and (b) is for structure B.

to occur in both types of bilayer structures. It is interesting
that the values of x(0) in structure B decrease more rapidly
than that in structure A with ¢" increasing. Between M and K
points in the first BZ of structure A, the spin susceptibility
curves with different ¢" are close to each other. It is because
the two energy bands are degenerate at the K point. On the
contrary, the structure B with energy gap at this point does
not have the same behavior.

With extensive DQMC simulation data, let us compare
magnetic properties of the two types of bilayer triangular
lattices in detail with Figs. 10-13. We observe that the van
Hove singularities for two structures with ' =0.4 are local-
ized in the filling regions between 1.6 and 1.75. With ¢’
=0.8 the van Hove singularities are in the zones from 1.7 to
1.85. When ¢'=0.4 the spin susceptibility of structure B is
little lower than that of structure A on the 48 X 2 lattice, but
this difference is not evident on the 64 X 2 lattice. When ¢’

(a) —0—t=0
1.04 —o0—t'=0.4
T=0.25 U=4 =06 a

o x@ o
// G
o=—— X

\eo J

FIG. 9. (Color online) The spin susceptibility x(q) is repre-
sented versus 7’ on the 48 X 2 lattice with filling (n)=1.7, U=4, and
T=0.33. (a) is for structure A, and (b) is for structure B.
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FIG. 10. (Color online) The spin susceptibility x(q) is repre-
sented versus filling on the 48 X 2 lattice for U=4, T=0.167, and
t'=0.4. The black curves are for structure A, and the red curves are
for structure B.

increases to 0.8, the FM fluctuations in structure B decay
monotonically but in structure A FM fluctuations are still
obvious. We take U=4, T=0.167, and t'=0.4, 0.8. Given the
results of RPA in Tables I and II, when ¢'=0.4 the critical
values U of the two structures are about 2, one-half of the
value (U=4) was used in simulations. However when ¢’
=0.8, the critical value U of structure A is still about 2; but
for structure B, U, approaches 4. In this case, the strength of
electron-electron interaction is enough to induce FM fluctua-
tions in structure A but not in structure B.

Figures 10-13 show band filling dependence of x(q). For
t'=0.4 and (n)=1.6 the peak of y(q) near the I' point is
broadened, and when the band filling varies from 1.65 to 1.7
the peak of x(q) at I' point is strengthened; as band filling
reaches 1.75 the value of x(0) begins to decrease. These
phenomena exist in both structures A and B. When #'=0.8
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FIG. 11. (Color online) The spin susceptibility x(q) is repre-
sented versus filling on the 48 X 2 lattice for U=4, 7=0.167, and
t'=0.8. The black curves are for structure A, and the red curves are
for structure B.
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FIG. 12. (Color online) The spin susceptibility x(q) is repre-
sented versus filling on the 64 X2 lattice for U=4, T=0.167, and
t'=0.4. The black curves are for structure A, and the red curves are
for structure B.

and band filling varies from 1.75 to 1.85 there are very weak
FM fluctuations in structure B. In contrast, there are distinct
FM fluctuations in structure A, which become the strongest
when filling reaches 1.75.

V. CONCLUSION

In this paper we have studied the magnetic properties of
two types of bilayer triangular lattices. We calculated the
energy spectrum and the DOS based on the tight-binding
model. When the interlayer hopping ¢’ is introduced, the
spectrum has two bands. The energy bands of structure A are
degenerate at K point. On the contrary, for structure B, there
is a considerable gap between the two bands. Compared to
the case of single layer, the DOS of bilayer structure is lower
in the filling region (n)=1.5—1.9. Moreover, there are two
singularities in the DOS for the bilayer triangular lattices. By
performing the RPA calculations, we obtained the critical
values of the Coulomb interaction U, of the magnetic insta-
bility. The results showed that with increasing ', larger U is
needed. For the same ¢', structure B requires a larger U than
that of structure A.

PHYSICAL REVIEW B 80, 014428 (2009)

A
O
2
s
il
=
o
E

—

S xa) o
o
\
o Q)
1
i
pr

. D ® 1
o f>eit NS
2 — < — F — K —
1.54 1.5
T |(©) z| @
R p<n>=1.8 <| <n>=1.85
1.0 .04

1 ]

(=] P, q
NN A /
0.5{ @< 0.54 J
oo @/3/ -oxe —

Ne {0 N >-8:30/©

0.0+ 0.0
M K rr M K r

FIG. 13. (Color online) The spin susceptibility x(q) is repre-
sented versus filling on the 64 X2 lattice for U=4, T=0.167, and
t'=0.8. The black curves are for structure A, and the red curves are
for structure B.

We have carried out a DQMC simulation for the single-
band Hubbard model on the bilayer triangular lattices. By
calculating the spin susceptibility, we studied the magnetic
properties of the bilayer systems near the van Hove singu-
larities. By the itinerant electron magnetism theory, the FM
fluctuations tend to the high DOS on the Fermi surface.
Compared to the single-layer triangular lattice case, when ¢’
is gradually increasing, FM fluctuations are suppressed in
both structures A and B.

We have explained the effects of t' on the FM fluctuations
in terms of the DOS. After analyzing the spin susceptibilities
with the same t’, the conclusion is that the FM fluctuations
are weaker in structure B than those in structure A. This
helps us in understanding the effects of frustration on the
magnetic properties of various structures.
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